Analysis of simple sequence repeat (SSR) structure and sequence within Epichloë endophyte genomes reveals impacts on gene structure and insights into ancestral hybridization events
نویسندگان
چکیده
Epichloë grass endophytes comprise a group of filamentous fungi of both sexual and asexual species. Known for the beneficial characteristics they endow upon their grass hosts, the identification of these endophyte species has been of great interest agronomically and scientifically. The use of simple sequence repeat loci and the variation in repeat elements has been used to rapidly identify endophyte species and strains, however, little is known of how the structure of repeat elements changes between species and strains, and where these repeat elements are located in the fungal genome. We report on an in-depth analysis of the structure and genomic location of the simple sequence repeat locus B10, commonly used for Epichloë endophyte species identification. The B10 repeat was found to be located within an exon of a putative bZIP transcription factor, suggesting possible impacts on polypeptide sequence and thus protein function. Analysis of this repeat in the asexual endophyte hybrid Epichloë uncinata revealed that the structure of B10 alleles reflects the ancestral species that hybridized to give rise to this species. Understanding the structure and sequence of these simple sequence repeats provides a useful set of tools for readily distinguishing strains and for gaining insights into the ancestral species that have undergone hybridization events.
منابع مشابه
Genetic Structure of SSR1 & SSR2 loci from Iranian Mycobacterium Avium Subspecies Paratuberculosis Isolates by a Short Sequence Repeat Analysis Approach
Abstract Background and Objective: Paratuberculosis has been repeatedly reported from Iranian ruminant herds. The extrem fastidious nature of Mycobacterium avium subspecies paratuberculsos hinders genomic diversity studies of the pathogen. Short Sequence Repeat analysis is one of the genome-based approches recently developed to overcome this d...
متن کاملSequence Analysis of SSR-Flanking Regions Identifies Genome Affinities between Pasture Grass Fungal Endophyte Taxa
Fungal species of the Neotyphodium and Epichloë genera are endophytes of pasture grasses showing complex differences of life-cycle and genetic architecture. Simple sequence repeat (SSR) markers have been developed from endophyte-derived expressed sequence tag (EST) collections. Although SSR array size polymorphisms are appropriate for phenetic analysis to distinguish between taxa, the capacity ...
متن کاملAbundant Degenerate Miniature Inverted-Repeat Transposable Elements in Genomes of Epichloid Fungal Endophytes of Grasses
Miniature inverted-repeat transposable elements (MITEs) are abundant repeat elements in plant and animal genomes; however, there are few analyses of these elements in fungal genomes. Analysis of the draft genome sequence of the fungal endophyte Epichloë festucae revealed 13 MITE families that make up almost 1% of the E. festucae genome, and relics of putative autonomous parent elements were ide...
متن کاملComparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species
Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...
متن کاملGenetic Diversity Analysis of Maize Hybrids Through Morphological Traits and Simple Sequence Repeat Markers
Comparing different methods of estimating the genetic diversity could define their usefulness in plant breeding programs. In this study, a total of 18 morphological traits and 20 simple sequence repeat (SSR) loci were used to study the morphological and genetic diversity among 20 maize hybrids selected from different countries, and to classify the hybrids into groups based on molecular profiles...
متن کامل